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Abstract

A new set of software applications and libraries for use in the archival and
analysis of pulsar astronomical data is introduced. Known collectively as the
PSRCHIVE scheme, the code was developed in parallel with a new data stor-
age format called PSRFITS, which is based on the Flexible Image Transport
System (FITS). Both of these projects utilise a modular, object-oriented design
philosophy. PSRCHIVE is an open source development environment that incor-
porates an extensive range of C++ object classes and pre-built command line
and graphical utilities. These deal transparently and simultaneously with multi-
ple data storage formats, thereby enhancing data portability and facilitating the
adoption of the PSRFITS file format. Here, data are stored in a series of modular
header-data units that provide flexibility and scope for future expansion. As it
is based on FITS, various standard libraries and applications may be used for
data input/output and visualisation. Both PSRCHIVE and PSRFITS are made
publicly available to the academic community in the hope that this will promote
their widespread use and acceptance.
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1 Introduction

1.1 Collaborative scientific software development

Modern, highly specialised experimental systems often require extensive original soft-
ware development. This is true for all tasks from direct hardware control through
to data reduction. Whilst individual research groups often approach such software
development from an isolated perspective, the proliferation of digital hardware and
wide-area networking makes global cooperative software development far more attrac-
tive, provided suitable common ground exists. Both cooperative software development
and the adoption of standard packages provide a number of distinct advantages to the
research community. For instance, as less effort is wasted unnecessarily duplicating
the work of others, cooperative development can lead to more efficient allocation of
resources. In addition, supporting the requirements of a larger user community pro-
motes the development of basic, general purpose routines that may be used in a wider
variety of situations. These influences result in more modular and extensible software.

However, it should be noted that a greater level of care and cooperation is required
in collaborative software development, especially the open source approach advocated
in this paper. For example, in contrast to most commercial software, “black box”
modularity is undesirable in scientific analysis, especially when the application of cer-
tain algorithms requires experienced judgment. Open, well-documented code provides
researchers with an accurate understanding of third-party analytical tools. There-
fore, contributing developers must be willing to put their code in the public domain,
making it freely available for non-commercial use by any other academic organisation.
Although this facilitates the exchange of ideas, it also raises the issue of potential loss
of intellectual property, which might discourage some authors.

It is also the case that collaborative development tends to become de-centralised,
especially when multiple developers have the ability to commit fundamental changes
to the code. Effective communication between the core developers becomes essential
to the smooth running of the project, necessitating greater attention to version con-
trol, the maintenance of stable releases, and the development of extensive and concise
documentation. Also, when a wider user community is affected by modifications to the
software, exhaustive methods must be employed to ensure the validity of changes and
the integrity of the system as a whole. Although each of these issues tend to increase
the workload of the collaborative developer, a much larger body of users will benefit
from the effort.

1.2 Software development in the pulsar community

The global pulsar community is ideally suited to adopt a collaborative approach to
software development. It consists of a relatively small number of locally centralised
groups that deal with different telescopes and instruments, leading to several parallel
butrincompatiblessoftware;development paths. As each path tends to be built around
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a highly specific data storage format, cross examination of data and algorithms is
problematic. In addition, because such software is generally designed for a limited
purpose, it is often difficult to extend its functionality without introducing obfuscated
code. This is especially true when the program develops in an experimental fashion,
as is often the case with scientific applications. In order to avoid future inflexibility,
sufficient time and care must be invested during the planning stage, calling on input
from both experienced software developers and pulsar astronomers.

1.3 Radio pulsar data

Radio pulsars are broadband point sources of highly polarised emission that exhibit
rapid pulsations with a characteristic period anywhere between one millisecond and ten
seconds. They are thought to be rotating neutron stars with a strong dipolar magnetic
field whose axis is not aligned with the rotation axis of the star (Gold 1968). Intense
beams of emission originate at the magnetic poles, which sweep across the sky with
each rotation of the star and produce the pulsed radio signal observed at Earth.

The characteristic signature of any radio pulsar is its integrated polarimetric pulse
profile, given by the observed Stokes parameters averaged (folded) as a function of
pulse longitude over several thousand individual pulses (Helfand, Manchester, & Tay-
lor 1975). Under the influence of electrons in the interstellar medium (Taylor & Cordes
1993), this pulsed signal is broadened by dispersive frequency smearing, which must
be corrected in order to infer the shape of the characteristic profile at the source. This
is normally done by dividing the observed bandwidth into narrow frequency channels,
which are appropriately delayed relative to each other before summing the detected
flux densities in each channel. However, as the dispersion measure may vary with
time or may not be known with sufficient accuracy at the time of the observation, it is
often necessary to store the individual pulse profiles observed in each frequency channel.

Additionally, it is possible to create a mean pulse profile only if a suitably accurate
model of the pulsar’s spin frequency and phase is available. The apparent pulse period
is affected by a number of phenomena, including the spin-down, timing noise, and/or
glitches intrinsic to the pulsar, variations in the interstellar dispersion, and Doppler
effects introduced by the relative motions of the Earth and pulsar. Inaccuracies in the
model that describes these effects introduce phase errors that accumulate with time
and cause the integrated profile to become smeared. Therefore, it is often beneficial to
store multiple, shorter integrations of the mean pulse profile instead of a single, long
integration. Furthermore, when a pulsar is bright enough, a great deal of additional
information about the characteristics of the pulsar emission can be obtained by record-
ing and analysing each individual pulse. Therefore, a useful pulsar data format must
be able to represent pulse profiles observed over multiple epochs of arbitrary length.

In summary, pulsar observations generally consist of a four-dimensional array of
data indexed by polarization component, pulse phase, frequency, and epoch. Software
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support for sensible groupings in other dimensions, such as orbital phase, is also highly
desirable. In addition, data from a number of telescopes can be combined to increase
sensitivity and contribute to the eventual detection of new phenomena, such as the
cosmic background of stochastic gravitational radiation (e.g. Hellings & Downs 1983;
Stinebring et al. 1990). Therefore, the data storage format should have a flexible struc-
ture that provides efficient access to key parameters, removed from any considerations
of individual instruments or signal processing schemes.

1.4 Processing radio pulsar data

Pulsars are observed for a variety of reasons, from studying the nature of their struc-
ture and emission mechanism (Dodson, McCulloch, & Lewis 2002) to utilising them as
highly stable clocks and astrophysical probes (Taylor & Weisberg 1982). Consequently,
the same pulsar observation can be used in a number of different contexts, one focusing
on the variation of polarization with frequency, another measuring general relativistic
effects on pulse times of arrival, etc. Nevertheless, our experience has shown that there
exist many common tasks associated with pulsar data analysis that can be standard-
ised within a modern open source development environment.

As a demonstration of the types of operations performed on pulsar data, consider the
specific example of pulse time of arrival calculation. In order to increase the signal-to-
noise ratio (S/N) of each observation, data are often integrated (scrunched) by several
factors in one or more of the available dimensions. Each resultant profile is then cross-
correlated with a high S/N standard profile known as a template, yielding an estimate
of the longitudinal offset between the two. This offset is added to the reference epoch
associated with a fiducial point in the observed pulse profile, yielding an arrival time in
the reference frame of the observatory, which is later converted into a barycentric arrival
time using a Solar System ephemeris. This data reduction operation involves a number
of typical tasks, including loading the arrays of numbers that represent the folded
profiles and computing sums, products, rotations, weighted averages, and correlations
of these arrays; sometimes in the Fourier domain. Most of these various operations must
be performed in a manner consistent with the observational parameters, taking into
account dispersive delays, observation time stamps and relative weightings of different
frequency channels, for example. At each step, the software must also ensure that all
parameters are updated accordingly.

1.5 Scope and design of PSRCHIVE and PSRFITS

It should be noted that the pulsar data under consideration represents a point near the
end of the typical pulsar data reduction chain. The software presented in this paper is
not intended for the direct handling of radio data such as that recorded by baseband
systems, or for the purposes of performing computationally expensive offline searching,
although some support for the storage of such data is provided in PSRFITS. The code
is also not designed to perform any phase-coherent dispersion removal or formation of

www.manaraa.com



filter-bank data; these techniques are treated as separate computational tasks. Code
for such data reduction is also available from the repository at the Swinburne Centre
for Astrophysics and Supercomputing under the umbrella name of BASEBAND DSP!,
a general library for use in digital signal processing.

The PSRCHIVE and PSRFITS schemes were designed from the beginning to form
an object-oriented framework into which existing algorithms and data structures could
be transplanted. By introducing layers of abstraction between the various levels of
responsibility, the design remains both flexible and extensible. For example, differ-
ent telescopes and instruments require the storage of different types of information,
including configuration parameters, observatory and instrumental status information,
and other site-specific data. Because there is no way of knowing exactly what fu-
ture systems might include, both PSRCHIVE and PSRFITS implement a generalised
scheme for incorporating arbitrarily complex data extensions, as described in Sec-
tions 2.3 and 3.2.

In addition, a basic framework of crucial parameters common to all pulsar obser-
vations and a wide variety of fundamental data reduction algorithms, such as those
described in Section 1.4, have been implemented. Each of these basic data structures
and reduction operations may be used in the composition of more complex scientific
processing algorithms. By virtue of continued development amongst the authors, the
PSRCHIVE library includes an extensive array of such high-level algorithms for use in
the calibration, visualisation, and analysis of pulsar data; these can be used immedi-
ately on any of the supported file formats.

PSRCHIVE and PSRFITS were developed in parallel and are presented in the
hope that they will promote increased data portability. The PSRFITS file format also
serves as an example of how to incorporate other, pre-existing file formats into the new
scheme, as described in Section 2.4. After two years of development, the code is now
ready for formal release to the wider pulsar community. In the following sections, we
describe the implementation of the new schemes and outline the specific advantages
that they offer.

2 Implementation Overview

2.1 Object-oriented programming

The modularity and extensibility required of our new scheme suggested an object-
oriented approach. Since much of the existing Swinburne analysis code had already
been written in both the C and C++ programming languages, it seemed a natural
step to progress in C++. The concepts of object classes and inheritance provided and
enforced by the syntax of this language offer a sound foundation on which to develop. In

Thttp://astronomy.swin.edu.au/pulsar /software/libraries/dsp
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particular, object-oriented design has aided in the realization of simultaneous support
of multiple file formats. We are aware that a majority of pulsar research groups prefer
to write a more procedural style of code, using FORTRAN or C. However, we feel that
the benefits of an object-oriented approach to data processing significantly outweigh
the potential learning curve involved in becoming proficient with C++.

2.2 Basic class structure

The required functionality of PSRCHIVE is built around a core framework of C++
object classes. The fundamental unit of all pulsar observations is the individual pulse
Profile, a one-dimensional array of floating point numbers, indexed by pulse phase.
The Integration is a two dimensional vector of Profile instances, indexed by fre-
quency and polarisation, as measured over a particular epoch. In turn, the Archive
is a one dimensional vector of Integration instances, indexed in one of a number of
possible ways (normally time). Each of these classes implement a wide range of basic
data manipulation and processing operations.

In the language of C++, we define the namespace Pulsar, which contains the
three base classes: Pulsar::Archive, Pulsar::Integration, and Pulsar::Profile. In
addition, there are other object classes in the Pulsar namespace that deal with spe-
cific tasks related to pulsar data analysis. For example, the Pulsar::Calibration
class employs various mathematical models of the instrumental response to calibrate
polarimetric observations (van Straten 2004).

2.3 Use of data abstraction

The three base classes implement a wide variety of basic algorithms, known as meth-
ods, that are commonly used in pulsar data analysis. However, they do not require
knowledge of any specific details related to system architecture, enabling their use
as templates upon which to base lower-level development. These templates define
the minimum set of parameters, known as attributes, required to implement the data
analysis methods, including observational parameters such as the name of the source,
centre frequency, bandwidth, etc. At the level of the Pulsar::Archive and Pul-
sar::Integration base classes, nothing is known about how data are stored on perma-
nent media or in computer memory.

The necessary task of translating between the two realms is performed by derived
classes that inherit the base classes. In order to inherit a base class, it is necessary
for the derived class to provide access to the required attributes and to implement the
methods used to read and write the data stored on disk. Therefore, for each specific
file format represented in the PSRCHIVE scheme, there corresponds a derived class
that inherits Pulsar::Archive. The syntax for the data access and file input/output
methods is defined by the base class and enforced by the C++ compiler, allowing all
derived classes to be treated as equal. Therefore, high-level code can be written in the
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Pulsar::Archive

Pulsar::Integration

Pulsar::Profile

get_centre_frequency:double
get_bandwidth::double
append(Archive)

datavector<float>

b

load(filename:string):Archive get_epoch:MJID weight:float
unload(filename:string) get_duration:double "—>
get_st_)urce_lname:srl ng get_folding_period:double rotate(phase:double)
get_dispersion_measure:double fscrunch snr-double

clone:Archive - - - -
tscrunch Archive::Extension Integration::Extension
dedisperse
: L
FITSArchive Basiclntegration

load_header(filename:string)
load_data(integration:integer)

source_name:string epoch:MJID FITSSubintExtension
dispersion_measure:double duration:double K>— - rordoubl
centre_frequency:double folding_period:double right_ascension:double
bandwidth:double S . declination:double

LST:double

FITSHdrExtension

version:string
creation_date:string

Figure 1: Class diagram of a portion of the PSRCHIVE library. The abstract base
classes are shown above the dotted line. Below this line, the FITSArchive class im-
plements Pulsar::Archive attribute storage and access methods, as well as methods
for loading and unloading data to and from a PSRFITS file. The combined use of com-
position and inheritance enables complex structures and behaviours to be constructed
using modular components.

language of the base class definition without the need for considering the implementa-
tion details of the derived classes. This abstraction, which is crucial to the flexibility
of the PSRCHIVE scheme, is demonstrated by the Unified Modeling Language (UML)
class diagram shown in Figure 1.

2.4 File format plug-in libraries

In order to take full advantage of this level of data abstraction, the PSRCHIVE scheme
makes use of dynamic shared object libraries, or plug-ins. These libraries are compiled
using special options that allow them to be linked into a program at run-time. Perhaps
the best known example of such a system is the plug-in scheme used to add function-
ality to many web browsers. Within PSRCHIVE, the machine code that defines a
Pulsar::Archive-derived class is stored inside a single plug-in file. The plug-in files
corresponding to different file formats are held in a central location that is scanned
on the first attempt to load pulsar data. The available plug-ins determine which file
formats are understood by providing a test routine that returns true if a file on disk is
ofsitssownsformatsslnsthissway, PSRCHIVE applications can quickly scan a given data

7
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file, select the appropriate derived class and load the pulsar data. This ensures that,
as the number of supported file formats grows, the size and complexity of any given
application program remains the same. We encourage all interested research groups
that currently maintain separate data formats to gain experience with the PSRCHIVE
scheme by developing their own file format plug-ins. By making the plug-in code
publicly available, research groups will be able to exchange data already stored using
different file formats.

In order to accommodate the stringent reliability requirements of observatory online
processing and monitoring systems, we also offer the option of compiling all PSRCHIVE
applications using a static linkage scheme. This makes the binary executables larger
on disk but removes the possibility of problems arising should a shared object file be
accidentally deleted or recompiled. Either option can be selected by simply editing one
line in the Makefile scheme.

3 PSRFITS

3.1 A standard format for pulsar data storage

One of the motivating factors behind the development of the PSRCHIVE scheme was
the alleviation of problems associated with highly specific and non-portable data stor-
age formats. This effort has highlighted several compelling reasons for the pulsar
community to move towards a more modular and standardised storage format. For in-
stance, the existence of a standard file format would significantly decrease the amount
of effort required to integrate and test new instrumentation. Historically, file formats
have accreted features as they became desirable or necessary. Given the wealth of past
experience available, it seems a logical step to define a new format that encompasses
a wide range of features from the beginning and is written in a modular way so as to
enable rapid, backwards-compatible upgrades. Indeed, one particular standard storage
format has already won wide acclaim within the astronomical community; the Flexible
Image Transport System (FITS) (Hanisch et al. 2001) has been in widespread use
for approximately three decades and has evolved into a highly adaptable data storage
scheme?. The format has been placed under the administration of the IAU FITS Work-
ing Group® and a wide array of software is available for FITS file manipulation. The
NASA High Energy Astrophysics Science Archive Research Centre* provides useful li-
braries and applications for manipulation and interrogation of FITS-based files. For
example, the program fv has made the process of testing and debugging the relevant
PSRCHIVE software much more straight forward.

In accordance with FITS standards, a PSRFITS file consists of a primary header-
data unit (HDU) followed by a series of extension HDUs. The primary HDU contains

2http:/ /archive.stsci.edu/fits/fits_standard
3http://www.cv.nrao.edu/fits /traffic/iaufwg /iaufwg.html
4http://heasarc.gsfc.nasa.gov/docs /heasarc/fits.html
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basic information such as telescope identification and location, observation start time
etc. Extension HDUs, formatted as binary tables, contain specific information related
to the observation such as the pulsar ephemeris, calibration data, and the pulsar data.
Although PSRFITS is primarily designed to store folded or single-pulse profile data, it
can also accommodate continuous time series data.

A useful feature of the standard FITS input/output routines is that new HDUs and
header parameters may be added transparently — if they are unknown to the reading
program, they are ignored. Furthermore, unused HDUs need not be written, even
though they are present in the definition. This feature allows, for example, a user
group to add information particular to a certain instrument without compromising use
of the definition by other groups.

A novel feature of the PSRFITS definition is the inclusion of HDUs containing
‘history’ information. For example, the first line of Processing History HDU contains
information about the data acquisition program and the initial structure of the file.
Subsequent lines record details of modifications to the structure or data (for example,
partial or complete de-dispersion or interference excision). A permanent record of the
steps that have been applied during data reduction has proven to be of great value
when later assessing the quality and validity of observational data.

3.2 The PSRFITS Definition

The current version of the PSRFITS definition file is available on the ATNF web pages®.
Table 1 describes the header-data units included in the current definition (Version 1.18).

In addition to the Main and Processing History HDUs, a number of optional HDUs
have been defined for general use with a variety of instrumentation. These enable
the storage of important status and diagnostic information about the observation,
and demonstrate the modularity and extensibility of the PSRFITS file format. The
physical parameters stored in the Ephemeris History HDU are based on the pulsar
timing program, tempo®. From the ephemeris parameters are derived the polynomial
coefficients (polyco) used to predict the apparent pulsar period and phase at the epoch
of the observation; these coefficients are stored in the Polyco History HDU. As improved
physical parameters become available, the data may be reprocessed, leading to new rows
in the Ephemeris and Polyco history tables. The calibration and feed cross-coupling
HDUs are designed to work with the routines in the Pulsar::Calibration class. Owing
to the intrinsic modularity of FITS, these additional HDUs are all optional; in fact, it
is not even strictly necessary to include any Integration data in a PSRFITS file. For
example, the polarimetric calibration modeling program creates a file containing only
the feed cross-coupling, injected calibration polarisation, and flux calibration HDUs.
This modularity is similar to that made available through the use of VOTable” XML
standards and it is likely that PSRFITS could in future be incorporated into the

Shttp://www.atnf.csiro.au/research/pulsar /psrfits
Shttp:/ /www.atnf.csiro.au/research /pulsar /tempo
Thttp://www.ivoa.net
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International Virtual Observatory system with a minimum of effort.

4 Working With the PSRCHIVE Scheme

4.1 The standard application set

The PSRCHIVE scheme includes an extensive set of pre-written application programs
that can be used to manipulate pulsar data in various ways. These include both
command line tools and graphical user interfaces built using Trolltech’s Qt8, a C++
toolkit for multi-platform GUI and application development. Table 2 presents a list of
applications included in the package at the time of publication, with a brief description
of each.

Readers may note that the modular philosophy at the heart of PSRCHIVE extends
all the way through to the user level applications. Each program tends to be small and
focused on a specific task, be it data compression, timing, RFI mitigation, etc. This
greatly simplifies development and maintenance compared to having one monolithic
program with multiple purposes.

4.2 PSRCHIVE as a development environment

PSRCHIVE was designed to provide users with more than just a set of pre-made
applications. The classes, libraries and examples provided are intended to simplify
the task of building new processing tools. To a large extent, developers who build on
the PSRCHIVE scheme do not have to directly manipulate the arrays of pulse profile
amplitudes. Instead, member functions of the various classes can be called to perform
basic operations like baseline removal and phase rotation. This has the dual benefit
of labour saving both in the initial development phase and in the debugging phase, as
both the authors and other users have already verified and tested the provided routines.
In case direct access to the profile amplitudes is required, we also provide interface
functions that return C style arrays. In the experience of the authors, the extra layer
of abstraction provided by the PSRCHIVE scheme can cut down the time between
program concept and full implementation to a matter of hours. New applications can
be built with only a few lines of code. For example, to remove the system noise floor,
compress all frequency channels and output the processed archive:

# include "Pulsar/Archive.h"
int main() {
Pulsar: :Archive*x arch = 0;

arch = Pulsar::Archive::load("filename");

8 httipa// wwwstrolitechscomy/products/qt /index.html

10
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Table 1: PSRFITS — A summary of the current definition
HDU Title Description

Main header Observer, telescope and receiver information,
source name and observation date and time

Processing history Date, program and details of data acquisition
and each subsequent processing step

Digitiser statistics Digitiser mode and count statistics
Digitiser counts Digitiser mode and count rate distribution
Original bandpass Observed bandpass in each polarisation

averaged over the observation

Coherent de-dispersion Parameters for coherent de-dispersion of
baseband data

Ephemeris history Pulsar parameters used to create or modify
profile data

Polyco history Elements of the polyco file used to predict
the apparent pulsar period

Flux calibration System temperature and injected noise
calibration data as a function of frequency
across the bandpass

Injected calibration polarisation Apparent polarisation of the injected
noise calibration signal as a function
of frequency

Feed cross-coupling Parameters of feed cross-coupling as a
function of frequency

Integration data Pulse profiles or fast-sampled data as a function
of time, frequency and polarisation

11
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Table 2: Standard applications included with PSRCHIVE

Application Description

pav Archive data visualisation. Based on the PGPLOT graphics
subroutine library with a simple command line interface

vap Archive header examination, allowing multiple user
selectable header parameters to be printed as ASCII to
the terminal

pam Archive manipulation, compression and processing

pat Pulse profile arrival time calculation, based on cross
correlation with a standard template profile

pas Standard profile phase alignment, for timing with multiple
standard template profiles

paz Radio frequency interference mitigation tool including
manual and automated channel zapping and sub-integration
removal

pac Archive polarimetric and flux calibration tool based on a
user-selectable set of advanced algorithms

pcm Polarimetric calibration modeling, creates instrumental
response transformations for use with pac

psrgui Interactive point-and-click data visualisation with a Qt
graphical interface

psradd Combination of multiple archives for formation of high
S/N profiles

rhythm A graphical interface for pulse arrival time fitting based

on tempo

12
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arch->remove_baseline();
arch->fscrunch() ;

arch->unload();

This simple program defines a pointer to a Pulsar::Archive and calls the generic
Pulsar::Archive::load routine, which takes a filename argument, applies a number
of tests to the file on disk (depending on the available plug-ins) and decides whether
or not it understands the particular format. If so, it summons the appropriate de-
rived class to read the data from disk. Once the data have been loaded, the Pul-
sar::Archive::remove_baseline function is called.

void Pulsar::Archive::remove_baseline (float phase, float width)

{
try {

if (phase == -1.0)
phase = find_min_phase (width);

for (unsigned isub=0; isub < get_nsubint(); isub++)
get_Integration(isub) -> remove_baseline (phase, width);

}
catch (Error& error) {
throw error += "Pulsar::Archive: :remove_baseline";

3

The Pulsar::Archive::remove_baseline function takes two arguments: the phase
and width of the off-pulse baseline. Both arguments are assigned default values in the
Archive.h header file; if phase is left unspecified, then the off-pulse baseline phase
will be found using the Pulsar::Archive::find_min_phase method; if width is un-
specified, then a default value will be used. The Pulsar:: Archive::remove_baseline
method makes multiple calls to the Pulsar::Integration::remove_baseline routine,
which performs the actual modification of amplitudes as follows:

void Pulsar::Integration::remove_baseline (float phase, float width)

{

if (Pulsar::Integration::verbose)
cerr << "Pulsar::Integration::remove_baseline entered" << endl;

try {

13
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if (phase == -1.0)
phase = find_min_phase (width);

vector<float> phases;
dispersive_phases (this, phases);

for (unsigned ichan=0; ichan<get_nchan(); ichan++) {
float chanphase = phase + phases[ichan];

for (unsigned ipol=0; ipol<get_npol(); ipol++)
x(profiles[ipol] [ichan]) -=
profiles[ipol] [ichan] -> mean (chanphase, width);

b
catch (Error& error) {
throw error += "Integration::remove_baseline";

by

This nested structure reduces the length of high-level routines, allowing actual
computations to be done at the level of abstraction that best suits the task. Likewise,
the Pulsar::Integration::remove_baseline routine calls various member functions
of both the Pulsar::Integration and Pulsar::Profile classes, computing the pulse
phase at which the minimum baseline level occurs in the total intensity of the entire
band. Adjustments for dispersive delays in each channel are performed and the mean
level at this phase is individually removed from each Pulsar::Profile stored in the
Pulsar::Integration. Developers should also note the extensive use of try/catch
blocks and a specifically designed Error class that carries descriptive information about
any exceptions thrown back to the calling procedure.

5 Resources and Availability

5.1 Obtaining and compiling the code

PSRCHIVE is freely available to the worldwide academic community. It is held in a
repository at Swinburne University of Technology in Melbourne, Australia and may
be accessed via the Concurrent Versions System®. As it is distributed as source code,
some experience with programming and compilation is necessary; however, installation
can be done in a fairly simple step-by-step manner thanks to the standard Makefile

http://www.cvshome.org/
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scheme included with the package. The code is compatible with all versions of the
GNU Compiler Collection'® between 2.95 and 3.2.2 and is routinely tested on both the
Linux and Solaris operating systems. Every effort will be made to ensure compatibility
with future gcc releases.

The PSRCHIVE scheme makes use of several external libraries, including the Star-
link Project!! SLALIB package. It also requires at least one external FFT library and
includes wrappers that provide compatibility with either FFTW 2.1.5'2 (available un-

der the GPL) or Intel MKL' (commercially available from Intel). The PGPLOT!
graphics subroutine library is also an integral part of the scheme.

Full documentation including instructions for download and installation are avail-
able online by following the menu options at the Swinburne Centre for Astrophysics
and Supercomputing web site!®. Read-only access to the repository is granted upon
receipt by the developers of a Secure Shell v2.0 public key that is used to allow remote
entry to the server. Write permissions to the repository require a computing account
with the Swinburne Centre for Astrophysics and Supercomputing. Please direct all
enquiries regarding access to psrchive@astro.swin.edu.au.

5.2 Online documentation

PSRCHIVE reference documentation is maintained online. In addition to the online
descriptions, each command line application has a -h option that displays a quick sum-
mary of how to use the program. The library of C++ classes is extensively documented
using the Doxygen'® system; the source code contains tagged comments from which
the online manual is automatically generated. This manual is intended as a reference
to programmers as it primarily describes the member functions available in each class
and the syntax of their arguments.

5.3 Support services

Although we provide no official support for the software, we are willing to assist with
PSRCHIVE related problems as time permits. General queries regarding installation
or operation can be addressed to psrchive@astro.swin.edu.au. We also provide a
mechanism for reporting serious bugs via an online interface known as YAQ, which can
be found at the Swinburne pulsar group web site.

Ohttp://gcc.gnu.org/
Uhttp: / /www.starlink.rl.ac.uk/

Lhttp:/ /www.fftw.org

Bhttp://www.intel.com /software/products/mkl/
Yhttp: / /www.astro.caltech.edu/tjp/pgplot /
http:/ /astronomy.swin.edu.au/pulsar/

Yhttp:/ /www.doxygen.org
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6 Conclusion

The task of organising astronomical data into a logical format lends itself surprisingly
well to the object-oriented programming paradigm. The combination of PSRCHIVE
and PSRFITS provides a powerful, ready-to-use pulsar data archival and reduction
system that can be rapidly adapted to new instruments. We hope that the ready
availability of an open source data reduction framework will facilitate large scale col-
laborative projects, such as an extended pulsar timing array (Foster and Backer 1990).
Therefore, we encourage both scientists and engineers involved with pulsar data acqui-
sition and reduction to consider taking advantage of these packages.
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